skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Duncan, Jonah_A J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Suppose that $$\Sigma ^{n}\subset \mathbb{S}^{n+1}$$ is a closed embedded minimal hypersurface. We prove that the first non-zero eigenvalue $$\lambda _{1}$$ of the induced Laplace–Beltrami operator on $$\Sigma $$ satisfies $$\lambda _{1} \geq \frac{n}{2}+ a_{n}(\Lambda ^{6} + b_{n})^{-1}$$, where $$a_{n}$$ and $$b_{n}$$ are explicit dimensional constants and $$\Lambda $$ is an upper bound for the length of the second fundamental form of $$\Sigma $$. This provides the first explicitly computable improvement on Choi and Wang’s lower bound $$\lambda _{1} \geq \frac{n}{2}$$ without any further assumptions on $$\Sigma $$. 
    more » « less